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Abstract

In this study, we introduce a bipartite graph associated to elements and equivalence classes of a
heap. We find some invariant numbers of the graph. Furthermore, we associate the graph prop-
erties of the graph of domain and codomain of surjective heap morphism. We also investigate
the tensor product of the bipartite graph of heaps.
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1 Introduction

There aremany researcheswhich associate some algebraic structures to certain graphs. Groups
and rings are the most studied algebraic structures associated to graphs. Mostly, the vertices of
the graphs are the elements of those algebraic structures, such as coprime graph [15], commuting
graph [17], power graph [7], Cayley graph [13], non-commuting graph [1], generating graph
[14], on the non-zero divisor graphs of some finite commutative rings [19], neighbors degree
sum energy of commuting and non-commuting graphs for dihedral groups [12]. Furthermore,
there are graphs whose vertex sets are the set of subgroups, such as intersection graph [2], co-
maximal subgroup graph [10], and order divisor graphs [8]. Assume thatG is a finite group. Let
A = G and S = {X|X ≤ G}. A bipartite graph associated to elements and cosets of subgroups of
G is an undirected graph which is simple. The vertex set of this graph is A ∪ S and g ∈ A, X ∈ S
are adjacent whenever gX = Xg [3].

Heap is another algebraic structure equipped with an associative ternary operation which is
first introduced by [5, 18] . Unlike groups, heaps do not have a unique identity element. Any
element of heap can be an identity element of a group constructed by defining certain binary
operation. Therefore, we can consider heaps as groups. In this study, we define a bipartite graph
associated to elements and sub-heaps on heaps. We observe the invariant number of the graph,
such as diameter and girth. Moreover, if we have a surjective heap morphism between two heaps,
we will associate some properties of the graphs of the domain and codomain. The last, we also
investigate the tensor product of the bipartite graph of heaps.

2 Materials and Methods

There are two basic concepts which will be used in this study, those are heaps and graphs
theory. The concept of heap theory in this section is based on [6, 16], while that of graph is based
on [9].

2.1 Heaps and groups

Assume that H ̸= ∅ and [−,−,−] is a ternary operation on H. The set H is called a heap
whenever it satisfies associativity and Mal’cev identity, those are

[
[p, q, r], s, t

]
=

[
p, q, [r, s, t]

]
and

[p, p, q] = q = [q, p, p] for every p, q, r, s, t ∈ H. The notation
(
H, [−,−,−]

)
or simplyHwill denote

a heap H with ternary operation [−,−,−]. A heap morphism is a map ϕ from heap H to heap H′

such that ϕ
(
[p, q, r]

)
=

[
ϕ(p), ϕ(q), ϕ(r)

]
for every p, q, r ∈ H.

Let, S ̸= ∅ and S ⊆ H. The set S is called sub-heap if [p, q, r] ∈ S for every p, q, r ∈ S .
Furthermore, sub-heap S of H is called normal if there exist x ∈ S such that for every h ∈ H,
s ∈ S satisfying [s, x, h] = [h, x, z] for some z ∈ S. Note that for any w ∈ H, the set {w} is a normal
sub-heap ofH. We canmake some groups from a heap

(
H, [−,−,−]

)
by taking any element e ∈ H

to define the following binary operation,

p ·e q = [p, e, q]. (1)

The set H with binary operation ·e is a group and e becomes the identity element. Otherwise, if
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we have a group (G, ·) then it can be constructed a heap G with the ternary operation,

[l,m, n] = lm−1n. (2)

Every subgroup G′ of G is automatically being sub-heap of heap G since [l,m, n] = lm−1n ∈ G′ for
every l,m, n ∈ G′. Moreover, a sub-heap S of H is subgroup of (H, ·ϵ) iff ϵ ∈ S.

Note that for every sub-heap S ofH, it can be defined an equivalence relations ∼S and S ∼ on
H. For every x, y ∈ H, the relations are defined respectively as,

x ∼S y iff [x, y, s] ∈ S, for some s ∈ S, (3)

and

x S ∼ y iff [t, x, y] ∈ S, for some t ∈ S. (4)

The equivalence class of x with respect to relation ∼S ( S ∼) is denoted by xS(Sx). When e ∈ S,
these equivalence classes associate with left and right cosets of subgroup S of group (H, ·e). To be
specific, xS = Sx and Sx = xS. Otherwise, if we have a subgroup G′ of group G, then it satisfies
that yG′ = G′y and G′y = yG′ for every y ∈ G. Hence, S is a normal sub-heap ofH iff S is a normal
subgroup of (H, ·e) for every e ∈ S.

Nowwewill discuss some properties of heaps related to heapmorphism. Let ϕ be amorphism
of heap from H to H′. If S is a sub-heap of H, then ϕ(S) is also a sub-heap of H′. Furthermore, ϕ
also preserves the normality of S. Otherwise, if subset T of H′ is a sub-heap, then subset ϕ−1(T )
of H is also sub-heap. Moreover, if T is normal in H′, then ϕ−1(T ) is also normal in H.

2.2 Graph theory

Our next discussion is the graph theory. We will present fundamental definitions of some
terms in graph. A graph Γ contains a nonempty vertex set V (Γ) and an edge set E(Γ)which con-
tains non-ordered pairs of distinct elements of V (Γ). This edge set can be the empty set. Two
distinct a, b ∈ V (Γ) are called adjacent if there is an edge in E(Γ) such that a and b are the end-
points. This single edge is denoted by (a, b) or (b, a). A path from a to b is a sequence of vertices
a = a1 − a2 − · · · − an = bwhere ai, ai+1 are adjacent and ai ̸= aj for i ̸= j.

Furthermore, a cycle is a path in which the endpoints are the same. Let a, b be an arbitrary
distinct vertices of Γ. Graph Γ is said to be connected if we can make a path from a to b in Γ. The
distance d(a, b) is the shortest path from a to b. The longest distance in Γ is called diameter of Γ,
while the girth is the length of the shortest cycle. The degree of vertex a is the number of edge
which is incident to a and it is denoted by deg(a). The minimum and maximum degree of Γ are
denoted by δ(Γ) and ∆(Γ) respectively. A decomposition of graph Γ is a family of edge-disjoint
subgraphs Γ1,Γ2, · · ·Γl such that E(Γ) =

⋃l
i=1E(Γi) [4]. There is a topological index which is

related to the degree of vertices of graph. It is called Zagreb index. There are two kinds on Zagreb
indices, those are the first Zagreb index which is denoted byM1(Γ) and the second Zagreb index
which is denoted byM2(Γ) [11]. Each formula of Zagreb indices are as follows,

M1(Γ) =
∑

a∈V (Γ)

(deg(a))2, (5)

M2(Γ) =
∑

(a,b)∈E(Γ)

deg(a) · deg(b). (6)
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3 Results

Webegin bydefining a bipartite graph associated to elements and equivalence classes of a heap.
LetH be a finite heap andA = {S|S sub-heap ofH}. A bipartite graph associated to elements and
equivalence classes Γ(H) is a graphwithH∪A as the set of vertices and two distinct vertices x ∈ H
and S ∈ A are adjacent if xS = Sx. We simply call graph Γ(H) as a bipartite graph of H when no
confusion arise.

Theorem 3.1. Assume thatH is a heap and Γ(H) is the corresponding bipartite graph. Then, the following
properties are satisfied;

1. Graph Γ(H) is a connected graph.

2. Diameter of Γ(H) is less than or equal to 4.

3. Girth of Γ(H) is equal to 4.

Proof.

1. Let A,B be any two vertices in Γ(H). Then, there are some cases will be considered;

Case 1: Let A = x ∈ H and B = y ∈ H. Then we can make a path from x to y, that is
x− {x} − y.

Case 2: LetA = x ∈ H andB = S be the sub-heap ofH. We canmake a path x−{x}−s−S
for some s ∈ S.

Case 3: Let A = S1 and B = S2 be the sub-heaps of H. The path between S1 and S2 is
S1 − s1 − {s1} − s2 − S2 for some s1 ∈ S1 and s2 ∈ S2.

2. Case 1: The maximum distance between any two vertices x, y ∈ H in Γ(H) is equal to 2
since x is adjacent to sub-heap {x} and {x} is adjacent to y.

Case 2: Assume that w is any element of H and S is an arbitrary element of A. The maxi-
mumdistance between these two elements is 3 since we have a pathw−{w}−z−S
for any z ∈ S.

Case 3: Let S1 and S2 be any elements of A. The maximum distance between S1 and S2 is
equal to 4. This is becausewe have a path S1−x−{x}−y−S2 for any x ∈ S1, y ∈ S2.

3. The shortest cycle in Γ(H) that we can make is a− {a} − b− {b} − a for any a, b ∈ H.

Theorem 3.2. If H is a heap with |H| = p for some prime p, then Γ(H) = Kp,p+1.

Proof. If |H| = p for some prime p, then the order of arbitrary sub-heaps of H is 1 or p. Con-
sequently, the sub-heaps of H are singleton or H itself. Thus, the family of sub-heaps of H is
A = {{x1}, {x2}, . . . , {xp},H}where xi ∈ H for all i = 1, 2, . . . , p. Note that every sub-heaps ofH
is adjacent to every elements of H. Hence, the result follows.

Theorem 3.3. Suppose thatH is a heap with |H| = n. Then, sub-heap S ofH is normal iff deg(S) = n.

Proof. Let S be a normal sub-heap of H. Then, xS = Sx for all x ∈ H. Therefore, deg(S) = |H|.
Conversely, assume that deg(S) = |H|. Then S is adjacent to x for all x ∈ H or equivalently
xS = Sx.
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Theorem 3.4. Let ψ be a surjective morphism of heap from heap H to H′ and L be a sub-heap of H. If
deg(L) = |H| then deg(ψ(L)) = |H′|.

Proof. If deg(L) = |H|, then by Theorem 3.3, L is normal in H. We thus get ψ(L) is normal in H′

by the surjectivity of ψ.

Theorem 3.5. Let H be a heap and (H, ·e, e) be the group by fixing e ∈ H to be the identity. If Γ(H) and
Γ′(H) are bipartite graphs of heap H and group (H, ·e, e) respectively, then Γ′(H) is a subgraph of Γ(H).

Proof. Note that, every subgroups ofH is also sub-heaps of heapH. It shows V (Γ′(H)) ⊆ V (Γ(H)).
Suppose that (x,N ) ∈ E(Γ′(H))where x ∈ H andN subgroup ofH, then xN = Nx. This implies
xN = Nx and hence (x,N ) ∈ E(Γ(H)).

Theorem 3.6. Suppose that ψ is a heap morphism from H to H′ and T be an arbitrary sub-heap of H′. If
ψ onto, then the following conditions satisfied;

1. If
(
a, ψ−1(T )

)
∈ E

(
Γ(H)

)
, then

(
ψ(a), T

)
∈ E

(
Γ(H′)

)
.

2. If (b, T ) ∈ Γ(H′), then
(
c, ψ−1(T )

)
∈ E

(
Γ(H)

)
for every c ∈ ψ−1(b).

Proof.

1. We will prove that, ψ(a)T = T ψ(a). Let x be any element of ψ(a)T . Then there is t ∈ T
which satisfies [x, ψ(a), t] = t1 ∈ T . By the surjectivity of ψ, we can write ψ(z) = x and
ψ(s) = t for some z ∈ H, s ∈ ψ−1(T ). Then,[

x, ψ(a), t
]
= t1,[

ψ(z), ψ(a), ψ(s)
]
= t1,

ψ
(
[z, a, s]

)
= t1.

Hence, [z, a, s] ∈ ψ−1(T ) which implies z ∈ aψ−1(T ) = ψ−1(T )a. Thus, [s′, a, z] ∈ ψ−1(T ) for
some s′ ∈ ψ−1(T ). Note that,

[s′, a, z] ∈ ψ−1(T ) ⇐⇒ ψ
(
[s′, a, z]

)
∈ T

⇐⇒
[
ψ(s′), ψ(a), ψ(z)

]
∈ T

⇐⇒
[
ψ(s′), ψ(a), x

]
∈ T ,

and ψ(s′) ∈ T implying x ∈ (T )ψ(a). Therefore ψ(a)T ⊆ (T )ψ(a). We can use similar way to
prove T ψ(a) ⊆ ψ(a)T .

2. We begin by proving cψ−1(T ) = ψ−1(T )c. Take an element y of cψ−1(T ). Then, we have
[y, c, s] ∈ ψ−1(T ) for some s ∈ ψ−1(T ) or equivalently

[
ψ(y), b, ψ(s)

]
= ψ

(
[y, c, s]

)
∈ T

which means ψ(y) ∈ bT = T b. Consequently, there exists t′ ∈ T such that
[
t′, b, ψ(y)

]
∈ T .

Since ψ is surjective, we have[
t′, b, ψ(y)

]
=

[
ψ(s′), ψ(d), ψ(y)

]
, ∃s′ ∈ ψ−1(t′) ⊆ ψ−1(T ), d ∈ ψ−1(b),

= ψ
(
[s′, d, y]

)
∈ T ,
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which means [s′, d, y] ∈ ψ−1(T ). Note that, c, d ∈ ψ−1(b) where ψ−1(b) = kerb(ψ) is normal
in H. Thus, ψ−1(b)c = cψ−1(b) = dψ−1(b) = ψ−1(b)d. Then, we can write [z, c, d] = g for some
z, g ∈ ψ−1(b) or equivalently d = [c, z, g]. By subtituing d = [c, z, g] to [s′, d, y], we get[

s′, [c, z, g], y
]
=

[
s′, g, [z, c, y]

]
,

=
[
[s′, g, z], c, y

]
∈ ψ−1(T ).

Note that, ψ
(
[s′, g, z]

)
=

[
ψ(s′), ψ(g), ψ(z)

]
=

[
t′, b, b

]
= t′ ∈ T . We can conclude that,[

s′, g, z
]
∈ ψ−1(T ). Therefore, we have y ∈ ψ−1(T )c. We can use analogous way to prove

ψ−1(T )c ⊆ cψ−1(T ).

Corollary 3.1. Suppose that ψ is a heap morphism from H toH′ and

b1 − T1 − b2 − T2 − · · · − bn − Tn, (7)

is a path in Γ(H′). If ψ is onto, then there exists a path in Γ(H) which corresponds to path (7).

Proof. Assume that, we have path (7). Since bi is adjacent to Ti and bj is adjacent to Tj for i ̸= j,
by Theorem 3.6, we have ai is adjacent to ψ−1(Ti) and aj is adjacent to ψ−1(Tj) for some
ai ∈ ψ−1(bi), aj ∈ ψ−1(bj). If ai = aj and ψ−1(Ti) = ψ−1(Tj), then bi = ψ(ai) = ψ(aj) = bj and
Ti = ψ(ψ−1(Ti)) = ψ(ψ−1(Tj)) = Tj which is impossible. Hence, we have a path

a1 − ψ−1(T1)− a2 − ψ−1(T2)− · · · − an − ψ−1(Tn), (8)

in Γ(H).

Corollary 3.2. Suppose that ψ is a heap morphism from H toH′ and

b1 − T1 − b2 − T2 − · · · − bn − Tn − b1, (9)

is a cycle of Γ(H′). If ψ is onto then,

a1 − ψ−1(T1)− a2 − ψ−1(T2)− · · · − an − ψ−1(Tn)− a1, (10)

is a cycle of Γ(H) for some ai ∈ ψ−1(bi).

Proof. The proof is obvious.

Theorem 3.7. If ϕ is a surjective morphism from heapH toH′, then the following conditions hold;

1. If x is any element of H, then deg(x) ≥ deg(ϕ(x)).

2. If T is any sub-heaps of H′, then deg(ϕ−1(T )) ≥ deg(T ).

Proof.

1. Let deg(ϕ(x)) = m and ϕ(x) be adjacent to T1, T2, . . . , Tm (see Figure 1). Then, by Theo-
rem 3.6, x is adjacent to ϕ−1(T1), ϕ−1(T2), . . . , ϕ−1(Tm). Suppose that, ϕ−1(Ti) = ϕ−1(Tj)
for i ̸= j. Then, there exists two distinct edges,

(
x, ϕ−1(Ti)

)
and

(
x, ϕ−1(Tj)

)
in Γ(H).

Hence, ϕ−1(Ti) ̸= ϕ−1(Tj). Note that, it is not guaranteed that if (x,S) ∈ E(Γ(H)) then,(
ϕ(x), ϕ(S)

)
∈ E

(
Γ(H′)

)
. Therefore, deg(x) ≥ deg(ϕ(x)).
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Figure 1: Vertex x and ϕ(x) of Γ(H) and Γ(H′) respectively.

2. Let, deg(T ) = m and T be adjacent to y1, y2, y3, . . . , ym. Then, by Theorem 3.6, for every
xi ∈ ϕ−1(y), xi is adjacent to ϕ−1(T ). It might be |ϕ−1(y)| ≥ 1. Note that, if xi = xj , then
yi = ϕ(xi) = ϕ(xj) = yj which is impossible. Therefore, we can conclude that
deg(ϕ−1(T )) ≥ deg(T ).

Theorem 3.8. Suppose that ψ is a heap morphism fromH toH′ which is onto. Then,

1. if x1, x2 ∈ H and x1 ̸= x2, then d(x1, x2) ≥ d
(
ψ(x1), ψ(x2)

)
.

2. if y ∈ H′ and T is a sub-heap of H′, then d
(
x, ψ−1(T )

)
= d(y, T ) for every x ∈ ψ−1(y).

3. if T1, T2 are sub-heaps of H′, then d
(
ψ−1(T1), ψ−1(T2)

)
= d(T1, T2).

Proof.

1. Note that, d(x1, x2) = 2with the shortest path x1−H−x2. It is possible that ψ(x1) = ψ(x2).
In this case, we have d

(
ψ(x1), ψ(x2)

)
= 0. If ψ(x1) ̸= ψ(x2), then d

(
ψ(x1), ψ(x2)

)
= 2 with

the path ψ(x1)−H′ − ψ(x2). Therefore, the result follows.

2. Let y ∈ H′ and T be a sub-heap of H′;

(a) If y is adjacent to T , then d(y, T ) = 1. By Theorem 3.6, x is adjacent to ψ−1(T ) for every
x ∈ ψ−1(y). Hence, d

(
x, ψ−1(T )

)
= 1.

(b) If y is not adjacent to T , then d(y, T ) = 3 with the shortest path T − t − {t} − y for
some t ∈ T . Suppose that there exists x ∈ ψ−1(y) such that x is adjacent to ϕ−1(T ).
By Theorem 3.6, ψ(x) = y is adjacent to T which is a contradiction. Thus, for every
x ∈ ψ−1(y), x is not adjacent to T . Therefore, the shortest path between x and ψ−1(T )
is x− {s} − s− ψ−1(T )where ψ(s) = t and it implies that d

(
x, ψ−1(T )

)
= 3.

3. There are some cases which will be considered.

(a) Let y ∈ T1 ∩ T2. Then, T1 − y − T2 is the shortest path between T1 and T2. Hence,
d(T1, T2) = 2. Note that, by Theorem 3.6, x is adjacent to ψ−1(T1) and ψ−1(T2) for every
x ∈ ψ−1(y). Hence d

(
ψ−1(T1), ψ−1(T2)

)
= 2.

(b) Let T1 ∩ T2 = ∅ and b be adjacent to T1 and T2. Then, d(T1, T2) = 2. According to
Theorem 3.6, a is adjacent to ψ−1(T1) and ψ−1(T2) for every a ∈ ψ−1(b). Therefore,
d
(
ψ−1(T1), ψ−1(T2)

)
= 2.

(c) Assume that T1∩T2 = ∅ and there is no b ∈ H′ such that b is adjacent to T1 and T2. Then,
d(T1, T2) = 4with the shortest path T1 − t1 − {t1} − t2 − T2 for any t1 ∈ T1 and t2 ∈ T2.
Suppose that x ∈ ψ−1(T1) ∩ ψ−1(T2). We have ϕ(x) ∈ T1 ∩ T2 which is a contradiction.
This makes ψ−1(T1) ∩ ψ−1(T2) = ∅. Now, suppose that x ∈ H is adjacent to ψ−1(T1)
and ψ−1(T2). According to Theorem 3.6, it implies ψ(x) is adjacent to T1 and T2. This
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is also a contradiction. Therefore, the shortest path between ψ−1(T1) and ψ−1(T2) is
ψ−1(T1)− s1 − {s1} − s2 − ψ−1(T2) and thus d

(
ψ−1(T1), ψ−1(T2)

)
= 4.

Theorem 3.9. Suppose that ψ is a morphism of heaps fromH toH′. If ψ onto, then the following properties
are hold;

1. If δ(Γ(H)) = deg(x) and δ(Γ(H′)) = deg(ϕ(w)), then δ(Γ(H)) ≤ δ(Γ(H′)).

2. If δ(Γ(H)) = deg(x) and δ(Γ(H′)) = deg(T ), then δ(Γ(H)) ≤ δ(Γ(H′)).

Proof.

1. δ(Γ(H)) = deg(x) and δ(Γ(H′)) = deg(ϕ(w)) for some w ∈ H. According to Theorem 3.7,
we have deg(ϕ(x)) ≤ deg(x). Since deg(ϕ(w)) = δ(Γ(H′)), then deg(ϕ(w)) ≤ deg(ϕ(x)).
Therefore, we have deg(ϕ(w)) ≤ deg(x) which implies δ(Γ(H′)) ≤ δ(Γ(H)).

2. Let δ(Γ(H)) = deg(x) for some x ∈ H and δ(Γ(H′)) = deg(T ) for some sub-heap T of H′.
It implies deg(T ) ≤ deg(ϕ(x)). According to Theorem 3.7, we have deg(ϕ(x)) ≤ deg(x).
Therefore, we obtain the inequality δ(Γ(H′)) = deg(T ) ≤ deg(x) = δ(Γ(H)).

Theorem 3.10. Let ϕ : H −→ H′ be a morphism of heaps which is onto. Then ∆(Γ(H)) ≥ ∆(Γ(H′)).

Proof.

Case 1: Let ∆(Γ(H)) = deg(x) and ∆(Γ(H′)) = deg(ϕ(y)) for some x, y ∈ H. On the contrary,
assume that n = deg(x) < deg(ϕ(y)) = m. Then, ϕ(y) is adjacent to T1, T2, . . . , Tm,
where Ti are sub-heaps of H′. According to Theorem 3.6, y ∈ ϕ−1(ϕ(y)) is adjacent to
ϕ−1(Ti) for all i = 1, 2, . . . ,m. If ϕ−1(Ti) = ϕ−1(Tj), then Ti = Tj which is impossible.
Thus, ϕ−1(Ti) ̸= ϕ−1(Tj) for i ̸= j. Note that, y might be adjacent to sub-heap S of H,
where S ≠ Ti for every i = 1, 2, . . . ,m. Therefore, we obtain deg(y) ≥ m > n = deg(x)
which contradicts to deg(x) is maximum in Γ(H).

Case 2: Let ∆(Γ(H)) = deg(x) for some x ∈ H and ∆(Γ(H′)) = deg(T ) for some sub-heap
T of H′. Suppose that, n = deg(x) < deg(T ) = m. Assume that, T is adjacent to
w1, w2, . . . , wm ∈ H′. By Theorem 3.6, for every i, there exists ai ∈ ϕ−1(wi) such that
ai is adjacent to ϕ−1(T ). If ai = aj , then wi = ϕ(ai) = ϕ(aj) = wj for i ̸= j which is
impossible. If ϕ−1(T ) is adjacent to c ∈ H where c ̸= ai for all i, then by Theorem 3.6,
we obtain ϕ(ϕ−1(T )) = T is adjacent to ϕ(c). Since deg(T ) = m, then ϕ(c) = wj for
some j. Hence, we have deg(ϕ−1(T )) ≥ m > n = deg(x). This is a contradiction since
deg(x) is maximum.

Case 3: Let ∆(Γ(H)) = deg(S) for some sub-heap S of H and ∆(Γ(H′)) = deg(z) for some
z ∈ H′. Suppose that, n = deg(S) < deg(z) = m. Let z be adjacent to sub-heaps
T1, T2, . . . , Tm of H′. By Theorem 3.6, for any y ∈ ϕ−1(z), y is adjacent to
ϕ−1(T1), ϕ−1(T2), . . . , ϕ−1(Tm). It is clear that ϕ−1(Ti) ̸= ϕ−1(Tj) for i ̸= j. Note that, y
might be adjacent to some sub-heap S of H where S ≠ ϕ−1(Ti) for all i. Hence, we get
deg(y) ≥ m > n = deg(S). This is a contradiction.
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Case 4: Let ∆(Γ(H)) = deg(S) and ∆(Γ(H′)) = deg(T ) for some sub-heaps S of H and sub-
heap T ofH′. Assume that n = deg(S) < deg(T ) = m. Let T be adjacent to
z1, z2, · · · , zm ∈ H′. According Theorem 3.6, for every i = 1, 2, · · · ,m, there exists
xi ∈ ϕ−1(zi) such that xi is adjacent to ϕ−1(T ). If xi = xj , then zi = ϕ(xi) = ϕ(xj) = zj
which is impossible. Thus xi ̸= xj for i ̸= j. Note that if ϕ−1(T ) is adjacent to w for
w ̸= xi, then by Theorem 3.6, ϕ(ϕ−1(T )) = T is adjacent to ϕ(w). Since deg(T ) = m,
then ϕ(w) = zj for some j. Hence we have deg(ϕ−1(T )) ≥ m > n = deg(S) which is a
contradiction.

Therefore∆(Γ(H)) ≥ ∆(Γ(H′)).

Theorem3.11. Letϕ : H −→ H′ be amorphism of heaps. Ifϕ is onto andΓ′
1,Γ

′
2, . . . ,Γ

′
r is a decomposition

of a graph Γ(H′), then Γ1,Γ2, . . . ,Γr,Λ is a decomposition of a graph Γ(H) where

E(Γi) =
{(
a, ϕ−1(T

)∣∣∣(ϕ(a), T )
)
∈ E(Γ′

i)
}
, (11)

and

E(Λ) =
{(
x,S

)∣∣∣S ≠ ϕ−1(T ),∀T sub-heap ofH′
}
. (12)

Proof. First, we will prove that E(Γi) ⊆ E(Γ(H)) for every i = 1, 2, . . . , r. Let,
(
a, ϕ−1(T )

)
be an

arbitrary element of E(Γi). Then, by (11), (ϕ(a), T ) ∈ E(Γ′
i). By Theorem 3.6,(

a, ϕ−1(T )
)
∈ E

(
Γ(H)

)
. Hence, E(Γi) is a subgraph of Γ(H) for every i = 1, 2, 3, . . . , r. Note that,

from (12), Λ is obviously a subgraph of Γ(H). Next, we will prove that E(Γi) ∩ E(Γj) = ∅ for
i ̸= j and E(Γi) ̸= Λ for every i = 1, 2, . . . , r. Suppose that,

(
a, ϕ−1(T )

)
∈ E(Γi) ∩ E(Γj). Then,(

ϕ(a), T
)
∈ E(Γ′

i) ∩ E(Γ′
j) which is a contradiction since Γ′

1,Γ
′
2, . . . ,Γ

′
r is a decomposition of a

graph Γ(H′). Now, suppose that (x,S) ∈ E(Γi) ∩ E(Λ) for some i.

Then, by (11) and (12), (x,S) =
(
a, ϕ−1(T )

)
for some sub-heap T ofH′ and S ≠ ϕ−1(T ) for every

sub-heap T of H′. This is impossible. Therefore, Γ1,Γ2, . . . ,Γr,Λ are edge-disjoint subgraphs of
Γ(H). Take any edge (b,U) ∈ E(Γ(H)). IfU = ϕ−1(T ) for some sub-heap T ofH′, then by Theorem
3.6,

(
ϕ(b), ϕ(U)

)
=

(
ϕ(b), T

)
∈ E(Γ(H′)). Since Γ′

1,Γ
′
2, . . . ,Γ

′
r is a decomposition of a graph Γ(H′),

then
(
ϕ(b), T

)
∈ E(Γ′

i) for some i. Hence,
(
b, ϕ−1(T )

)
= (b,U) ∈ E(Γi). Now, if U ̸= ϕ−1(T ) for

all sub-heap T of H′, then (b,U) ∈ E(Λ). Therefore, we can conclude that Γ1,Γ2, . . . ,Γr,Λ is a
decomposition of a graph Γ(H).

Lemma 3.1. Let ϕ : H −→ H′ be a morphism of heaps which is onto. Then, |E(Γ(H′))| ≤ |E(Γ(H))|.

Proof. Let (y, T ) ∈ E
(
Γ(H′)

)
. Based onTheorem 3.6,

(
x, ϕ−1(T )

)
∈ E

(
Γ(H)

)
for every x ∈ ϕ−1(y).

It is possible that |ϕ−1(y)| ≥ 1. It shows that the pre-image of (y, T ) in E(Γ(H)) can be more than
one edge. Now assume that (x,S) is any edge in Γ(H). If S ̸= ϕ−1(T ) for every sub-heap T
of H′, then it is not guaranteed that ϕ(x) is adjacent to ϕ(S). Therefore, we can conclude that
|E(Γ(H′))| ≤ |E(Γ(H))|.

Theorem 3.12. Let ϕ : H −→ H′ be a morphism of heaps which is onto. Then the following conditions
are satisfied;

1. M1(Γ(H′)) ≤M1(Γ(H)).

2. M2(Γ(H′)) ≤M2(Γ(H)).
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Proof.

1. Note that since ϕ is onto, y = ϕ(x) where x ∈ H. Based on Theorem 3.7, we have the
following inequality,

M1(Γ(H′)) =
∑
y∈H′

(
deg(y)

)2

+
∑

T sub-heap of H′

(
deg(T )

)2

≤
∑
x∈H

(
deg(x)

)2

+
∑

T sub-heap ofH′

(
deg

(
ϕ−1(T )

))2

≤
∑
x∈H

(
deg(x)

)2

+
∑

T sub-heap ofH′

(
deg

(
ϕ−1(T )

))2

+
∑

S≠ϕ−1(T )

(
deg(S)

)2

=M1(Γ(H)). (13)

2. Note that by Theorem 3.6, for every edge
(
ϕ(a), T

)
∈ E

(
Γ(H′)

)
, there exists some edges(

a, ϕ−1(T )
)
∈ E(Γ(H)). It implies that,

M2(Γ(H′)) =
∑

(ϕ(a),T )∈E(Γ(H′))

deg
(
ϕ(a)

)
· deg(T )

≤
∑

(ϕ(a),T )∈E(Γ(H′))

deg(a) · deg
(
ϕ−1(T )

)
≤

∑
(a,ϕ−1(T ))∈E(Γ(H))

|ϕ−1
(
ϕ(a)

)
| · deg(a) · deg

(
ϕ−1(T )

)
≤

∑
(a,ϕ−1(T ))∈E(Γ(H))

|ϕ−1
(
ϕ(a)

)
| · deg(a) · deg

(
ϕ−1(T )

)
+

∑
(x,(S))∈E(Γ(H))

S≠ϕ−1(T )

deg(x) · deg(S)

=M2

(
Γ(H)

)
. (14)

Let (H1, [−,−,−]1) and (H2, [−,−,−]2) be heaps. We can construct a new heap H = H1 ×H2

with the following ternary operation

[−,−,−] : H×H×H −→ H[
(a1, a2), (b1, b2), (c1, c3)

]
7→

[
[a1, b1, c1]1, [a2, b2, c2]2

]
. (15)

Every sub-heap of H can be written as S1 × S2 where S1 and S2 are sub-heaps of H1 and H2

respectively. Furthermore, every normal sub-heaps of H can be written as N1 × N2 for N1 and
N2 are normal sub-heaps of H1 and H2 respectively. In the next properties, we will discuss the
association between graph Γ(H), Γ(H1), and Γ(H2).

Theorem 3.13. LetH1,H2 be heaps andH = H1 ×H2. An element (x1, x2) ∈ H is adjacent to S1 ×S2

in Γ(H) iff x1 is adjacent to S1 in Γ(H1) and x2 is adjacent to S2 in Γ(H2).

Proof. Assume that, (x1, x2) ∈ H is adjacent toS1×S2. Thismeans that (x1, x2)S1×S2
= S1×S2

(x1, x2).
Now, let a1 ∈ x1S1

. Then, [x1, a1, s1]1 ∈ S1 for some s1 ∈ S1. We can always write t ∈ S2 as
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[x2, x2, t]2. Consequently, we have[
(x1, x2), (a1, x2), (s1, t)

]
=

(
[x1, a1, s1]1, [x2, x2, t]2

)
∈ S1 × S2, (16)

which means (a1, x2) ∈ (x1, x2)S1×S2
= S1×S2(x1, x2). Thus, there exists (t1, t2) ∈ S1 × S2 such

that,

[(t1, t2), (a1, x2), (x1, x2)]︸ ︷︷ ︸
∈S1×S2

= ([t1, a1, x1]1, [t2, x2, x2]2),

= ([t1, a1, x1], t2). (17)

Therefore, we can conclude that [t1, a1, x1] ∈ S1 or equivalently a1 ∈ S1
x1.

Now, take any element b1 ∈ S1x1. Then, there exists s′ ∈ S1 such that [s′, x1, b1]1 ∈ S1. Note that,
for every t′ ∈ S2 can be written as t′ = [t′, x2, x2]2. Thus, we have[

(s′, t′), (x1, x2), (b1, x2)
]
=

(
[s′, x1, b1]1, [t

′, x2, x2]2
)
∈ S1 × S2, (18)

whichmeans (b1, x2) ∈ S1×S2
(x1, x2) = (x1, x2)S1×S2

. Consequently, there exists (u1, u2) ∈ S1×S2

such that,

[(x1, x2), (b1, x2), (u1, u2)]︸ ︷︷ ︸
∈S1×S2

= ([x1, b1, u1]1, [x2, x2, u2]2),

= ([x1, b1, u1]1, u2). (19)

This implies [x1, b1, u1] ∈ S1 for some u1 ∈ S1 or equivalently b1 ∈ x1S1
. We have thus proved that

x1 is adjacent to S1. By using similar way, we can prove that x2 is adjacent to S2.

Assume that, x1 is adjacent to S1 and x2 is adjacent to S2. Our next objective is to prove that
(x1, x2) ∈ H is adjacent to S1 × S2. Assume that, (c1, c2) ∈ (x1, x2)S1×S2

. Then,[
(c1, c2), (x1, x2), (v1, v2)

]
∈ S1 × S2 for some (v1, v2) ∈ S1 × S2. The following equality,[

(c1, c2), (x1, x2), (v1, v2)
]
=

(
[c1, x1, v1]1, [c2, x2, v2]2

)
, (20)

shows that [c1, x1, v1]1 ∈ S1 and [c2, x2, v2]2 ∈ S2. It implies that c1 ∈ x1S1
and c2 ∈ x2S2

. By
the adjacency of x1 to S1 and x2 to S2, we have c1 ∈ S1

x1 and c2 ∈ S2
x2. Then, we can write

[w1, x1, c1] ∈ S1 and [w2, x2, c2] ∈ S2 for some w1 ∈ S1, w2 ∈ S2 and consequently,(
[w1, x1, c1]1, [w2, x2, c2]2

)︸ ︷︷ ︸
∈S1×S2

=
[
(w1, w2), (x1, x2), (c1, c2)

]
. (21)

This means that (c1, c2) ∈ S1×S2
(x1, x2). We can use analogous way to prove that,

S1×S2
(x1, x2) ⊆ (x1, x2)S1×S2

.

By Theorem 3.13, it is obvious that Γ(H1 ×H2) is equal to the tensor product of graph Γ(H1)
and Γ(H2).
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4 Conclusions

Bipartite graph associated to elements and cosets of groups have been developed to heaps. The
bipartite graph associated to elements and equivalence classes of heaps is a connected graph with
diameter less than or equal to 4 and girth equal to 4. We also identify the relation between bipar-
tite graph of heaps and groups. We obtain that the bipartite graph of groups is a subgraph of the
bipartite graph of corresponding heaps. Moreover, if we have a morphism of heaps which is onto,
we investigate the bipartite graph of the domain and the bipartite graph of the codomain. Furthre-
more, if we have two heaps, we find the relation between the bipartite graph of cross product of
those two heaps and the bipartite graph of each component.
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